EONS LEARNING

  • Home
  • About Us
  • Classroom
    • Resources >
      • Study Skills
      • Periodic Table
      • Common Ion Sheet
      • The Scientific Method
      • Doing Background Research
    • Introduction and Course Philosophy
    • Unit 1: Beginning Chemistry >
      • Lesson 1: The Atom >
        • What is an Atom?
        • The Structure of Atoms
        • The Periodic Table
        • Modeling Atoms
      • Lesson 2: Chemical Bonding >
        • Why Do Atoms Form Bonds?
        • Ionic Bonding
        • Covalent Bonding
        • Intermolecular Attraction
      • Lesson 3: Chemical Nomenclature >
        • Octet Rule
        • Ionic Compounds
        • Covalent Molecules
      • Lesson 4: Molecular Molecules >
        • Modeling Ionic Compounds
        • Modeling Covalent Molecules
      • Lesson 5: States of Matter >
        • States of Matter
        • Phase Changes
      • Lesson 6: Density >
        • What is Density?
        • Calculating Density
      • Lesson 7: Thermodynamics >
        • Temperature
        • Heat
        • Gas Laws
      • Lesson 8: Solution Chemistry >
        • Diffusion
        • Solutions and Molarity
        • Semi-Permeable Membranes
      • Lesson 9: Thermal Expansion >
        • Thermal Expansion
    • Unit 2: Earth Science >
      • Lesson 10: Earth at a Glance >
        • Perspective
        • Maps
      • Lesson 11: Layers of the Earth >
        • Layers of the Earth
      • Lesson 12: Plate Tectonics >
        • Plate Tectonics
      • Lesson 13: Rocks and Minerals >
        • Rocks and Minerals
      • Lesson 14: Particle Sorting >
        • Differentiation
        • Deposition of Sediment
      • Lesson 15: The Atmosphere >
        • Composition of the Atmosphere
        • Layers of the Atmosphere
        • Change Over Time
        • Atmospheric Disruption
    • Unit 3: The Cell >
      • Lesson 16: Life >
        • What is Life?
        • Structural Hierarchy of Living Things
      • Lesson 17: Biochemistry >
        • Intro to Biochemistry
        • Water
        • Micromolecules
        • Energy, Carbohydrates, Lipids
        • Protein and Nucleic Acid
      • Lesson 18: Cells >
        • What are Cells?
        • Microscopy
        • Plant and Animal Cells
      • Lesson 19: Membrane Transport >
        • A Special Environment
        • The Structure of Membranes
        • Membrane Transport
      • Lesson 20: Energy and Cell Respiration >
        • Energy in Biology
        • Energy Diagrams
        • Glycolysis and Anaerobic Respiration
        • Aerobic Cellular Respiration
      • Lesson 21: Photosynthesis >
        • Plants Get Energy From The Sun
        • Photosynthesis Process
        • Energy, Ecosystems, and the Environment
    • Unit 4: Anatomy and Physiology >
      • Lesson 22: The Human Body >
        • What Are Bodies Made Of?
        • What Do Bodies Do?
      • Lesson 23: The Nervous System >
        • The Nervous System
        • Neuronal Communication
        • The Central Nervous System
      • Lesson 24: The Endocrine System >
        • The Endocrine System
        • Hormones
        • Hormones, Puberty, and Reproduction
      • Lesson 25: The Integumentary System >
        • The Integumentary System
      • Lesson 26: The Musculoskeletal System >
        • The Skeletal System
        • The Muscular System
        • Anatomy Of The Musculoskeletal System
      • Lesson 27: The Cardiovascular System >
        • Blood and Blood Vessels
        • The Heart
      • Lesson 28: The Respiratory System >
        • The Respiratory System
      • Lesson 29: The Digestive System >
        • The Digestive System
        • Nutrition
      • Lesson 30: The Excretory System >
        • The Excretory System
      • Lesson 31: The Immune System >
        • Disease and Infection
        • Immunity
    • Units 5-6 Coming Soon
  • Workbench
    • Unit 1 >
      • EIS >
        • Lesson 1: Atoms
        • Lesson 2: Chemical Bonding
        • Lesson 3: Chemical Nomenclature
        • Lesson 4: Molecular Models
        • Lesson 5: States of Matter
        • Lesson 6: Density
        • Lesson 7: Thermodynamics
        • Lesson 8: Solution Chemistry
        • Lesson 9: Thermal Expansion
      • Unit 1: Project
      • Unit 1: Exam Review
      • Unit 1: Exam
    • Unit 2 >
      • EIS >
        • Lesson 10: Earth at a Glance
        • Lesson 11: Layers of the Earth
        • Lesson 12: Plate Tectonics
        • Lesson 13: Rocks and Minerals
        • Lesson 14: Particle Sorting
        • Lesson 15: The Atmosphere
      • Unit 2: Project
      • Unit 2: Exam Review
      • Unit 2: Exam
    • Unit 3 >
      • EIS >
        • Lesson 16: Life
        • Lesson 17: Biochemsitry
        • Lesson 18: Cells
        • Lesson 19: Membrane Transport
        • Lesson 20: Energy and Cell Respiration
        • Lesson 21: Photosynthesis
      • Unit 3: Project
      • Unit 3: Exam Review
      • Unit 3: Exam
    • Unit 4 >
      • EIS >
        • 22: The Human Body
        • 23: The Nervous System
        • 24: The Endocrine System
        • 25: The Integumentary System
        • 26: The Musculoskeletal System
        • 27: The Cardiovascular System
        • 28: The Respiratory System
        • 29: The Digestive System
        • 30: The Excretory System
        • 31: The Immune System
      • Unit 4 Project
      • Unit 4 Exam Review
      • Unit 4 Exam
    • Units 5-6 Coming Soon
  • Donate
  • Home
  • About Us
  • Classroom
    • Resources >
      • Study Skills
      • Periodic Table
      • Common Ion Sheet
      • The Scientific Method
      • Doing Background Research
    • Introduction and Course Philosophy
    • Unit 1: Beginning Chemistry >
      • Lesson 1: The Atom >
        • What is an Atom?
        • The Structure of Atoms
        • The Periodic Table
        • Modeling Atoms
      • Lesson 2: Chemical Bonding >
        • Why Do Atoms Form Bonds?
        • Ionic Bonding
        • Covalent Bonding
        • Intermolecular Attraction
      • Lesson 3: Chemical Nomenclature >
        • Octet Rule
        • Ionic Compounds
        • Covalent Molecules
      • Lesson 4: Molecular Molecules >
        • Modeling Ionic Compounds
        • Modeling Covalent Molecules
      • Lesson 5: States of Matter >
        • States of Matter
        • Phase Changes
      • Lesson 6: Density >
        • What is Density?
        • Calculating Density
      • Lesson 7: Thermodynamics >
        • Temperature
        • Heat
        • Gas Laws
      • Lesson 8: Solution Chemistry >
        • Diffusion
        • Solutions and Molarity
        • Semi-Permeable Membranes
      • Lesson 9: Thermal Expansion >
        • Thermal Expansion
    • Unit 2: Earth Science >
      • Lesson 10: Earth at a Glance >
        • Perspective
        • Maps
      • Lesson 11: Layers of the Earth >
        • Layers of the Earth
      • Lesson 12: Plate Tectonics >
        • Plate Tectonics
      • Lesson 13: Rocks and Minerals >
        • Rocks and Minerals
      • Lesson 14: Particle Sorting >
        • Differentiation
        • Deposition of Sediment
      • Lesson 15: The Atmosphere >
        • Composition of the Atmosphere
        • Layers of the Atmosphere
        • Change Over Time
        • Atmospheric Disruption
    • Unit 3: The Cell >
      • Lesson 16: Life >
        • What is Life?
        • Structural Hierarchy of Living Things
      • Lesson 17: Biochemistry >
        • Intro to Biochemistry
        • Water
        • Micromolecules
        • Energy, Carbohydrates, Lipids
        • Protein and Nucleic Acid
      • Lesson 18: Cells >
        • What are Cells?
        • Microscopy
        • Plant and Animal Cells
      • Lesson 19: Membrane Transport >
        • A Special Environment
        • The Structure of Membranes
        • Membrane Transport
      • Lesson 20: Energy and Cell Respiration >
        • Energy in Biology
        • Energy Diagrams
        • Glycolysis and Anaerobic Respiration
        • Aerobic Cellular Respiration
      • Lesson 21: Photosynthesis >
        • Plants Get Energy From The Sun
        • Photosynthesis Process
        • Energy, Ecosystems, and the Environment
    • Unit 4: Anatomy and Physiology >
      • Lesson 22: The Human Body >
        • What Are Bodies Made Of?
        • What Do Bodies Do?
      • Lesson 23: The Nervous System >
        • The Nervous System
        • Neuronal Communication
        • The Central Nervous System
      • Lesson 24: The Endocrine System >
        • The Endocrine System
        • Hormones
        • Hormones, Puberty, and Reproduction
      • Lesson 25: The Integumentary System >
        • The Integumentary System
      • Lesson 26: The Musculoskeletal System >
        • The Skeletal System
        • The Muscular System
        • Anatomy Of The Musculoskeletal System
      • Lesson 27: The Cardiovascular System >
        • Blood and Blood Vessels
        • The Heart
      • Lesson 28: The Respiratory System >
        • The Respiratory System
      • Lesson 29: The Digestive System >
        • The Digestive System
        • Nutrition
      • Lesson 30: The Excretory System >
        • The Excretory System
      • Lesson 31: The Immune System >
        • Disease and Infection
        • Immunity
    • Units 5-6 Coming Soon
  • Workbench
    • Unit 1 >
      • EIS >
        • Lesson 1: Atoms
        • Lesson 2: Chemical Bonding
        • Lesson 3: Chemical Nomenclature
        • Lesson 4: Molecular Models
        • Lesson 5: States of Matter
        • Lesson 6: Density
        • Lesson 7: Thermodynamics
        • Lesson 8: Solution Chemistry
        • Lesson 9: Thermal Expansion
      • Unit 1: Project
      • Unit 1: Exam Review
      • Unit 1: Exam
    • Unit 2 >
      • EIS >
        • Lesson 10: Earth at a Glance
        • Lesson 11: Layers of the Earth
        • Lesson 12: Plate Tectonics
        • Lesson 13: Rocks and Minerals
        • Lesson 14: Particle Sorting
        • Lesson 15: The Atmosphere
      • Unit 2: Project
      • Unit 2: Exam Review
      • Unit 2: Exam
    • Unit 3 >
      • EIS >
        • Lesson 16: Life
        • Lesson 17: Biochemsitry
        • Lesson 18: Cells
        • Lesson 19: Membrane Transport
        • Lesson 20: Energy and Cell Respiration
        • Lesson 21: Photosynthesis
      • Unit 3: Project
      • Unit 3: Exam Review
      • Unit 3: Exam
    • Unit 4 >
      • EIS >
        • 22: The Human Body
        • 23: The Nervous System
        • 24: The Endocrine System
        • 25: The Integumentary System
        • 26: The Musculoskeletal System
        • 27: The Cardiovascular System
        • 28: The Respiratory System
        • 29: The Digestive System
        • 30: The Excretory System
        • 31: The Immune System
      • Unit 4 Project
      • Unit 4 Exam Review
      • Unit 4 Exam
    • Units 5-6 Coming Soon
  • Donate

the muscular system

We’ve just learned that bones provide leverage for muscles to help you move. But, bones still wouldn’t do you much good in terms of movement if you didn’t have muscles. Muscles contract and relax to allow for movement.

muscle contraction

When a muscle contracts, it gets shorter. It will look like it's bulging, and it is able to bear weight.  This is because all the stuff the muscle is made of is squishing together, like a bunch of friends moving closer to each other to take a picture, in order to cause the contraction. You don’t need to know exactly how this process works for this class, but here’s a video, if you’re interested:
The events that set off muscle contraction are related to ions crossing the membrane through facilitated diffusion. The proteins that ions flow through to get into the membrane are gated. These gates are opened when they receive a biochemical message from nerve cells. You don’t need to know any of these details for this class, but it is a good reminder that everything that happens in the body is related to biochemistry, including simple chemical processes that you already know about, like diffusion.

When you flex your arm, that’s contraction. When you go for a run, your leg muscles are repeatedly contracting and relaxing.

antagonistic pairing

The relaxed state describes a muscle at rest, ready to contract when needed. In this state, the muscle is longer and not bulged. 
Picture
Picture
Contraction: Bulging and getting shorter.
Relaxation: The long, at-rest muscle.
CC Wikipedia 
Relaxation is different from stretching a muscle, which is actively pulling the stuff the muscle is made of apart. Your muscles will not stretch on their own: you have to put force on them by something else, like another muscle, in order to pull them apart. So, then, how do we ever get a muscle to “uncontract,” if this would require pulling the fibers apart?

The answer is relatively simple: Muscles are found in antagonistic pairs, which means that each muscle will have a counterpart that does the opposite (“antagonistic” means fighting against). Your bicep bends your elbow up. Your tricep pulls your elbow back down. Your hamstring bends your knee back. Your quadricep pulls your knee forward again. Every muscle has its opposite. This video demonstrates:

muscle structure

Muscles are made up of muscle fibers, or muscle cells, which are long and stringy. They are made up of long, stringy proteins. These proteins slide past each other to cause a muscle contraction when they get the go-ahead from nerves. Another unique feature of muscle cells is that they usually have a lot of mitochondria. This is because contracting muscles takes a lot of energy, so muscle cells need a lot of mitochondria to provide that energy.
Picture
Muscle fibers look a bit different from “regular” cells because they have a special function (to contract), so they need a special structure. And:
Picture
Muscle fibers are bundled together in bunches called fascicles, which are bundled together to make a whole skeletal muscle (such as a bicep). 
Picture

attaching to bone

As we’ve learned, muscles are all but useless without their attachment to bones, which provide leverage. Tendons attach the muscle to the bone. They’re pretty stretchy, kind of like a rubber band. This allows the muscle to stay attached to bone (so that they can get that leverage for movement), while still having flexibility for range of motion.

If you’d like to learn more about tendons and what happens when they get damaged (usually due to athletic injury), this video gives a good overview:

skeletal, cardiac, and smooth muscle

So far, we’ve only been talking out skeletal muscle, which is the type of muscle that allows for voluntary movement of the skeleton. Voluntary means that we choose to move them, rather than it being an automatic body function. 

There are also two other types of muscle in your body. Smooth muscle lines a lot of your internal organs and helps to move stuff along. For example, in the stomach and gut, smooth muscle contracts to push food through your intestines so you can digest it. Cardiac muscle is found only in the heart and helps to keep it beating. Both smooth and cardiac muscle are involuntary. That means you can’t consciously control how and when they work. Like skeletal muscle, smooth muscle and cardiac muscle both have unique structures that relate to their unique functions, but we won’t worry too much about the details of these cell types right now. The main focus here is on skeletal muscle.
Picture

Summary

This video gives a pretty good overview of the most important ideas we discussed in this lesson, plus offers you some useful tips for getting that superhero strength (spoiler: It involves using your muscles, regularly and often):
If you’d like a deeper dive into some of the scientific ideas we’ve discussed here, this video gives a good overview:
You should understand:
  • That muscles contract when the protein filaments that make them up slide past each other, shortening the muscle.
  • The difference between contraction and relaxation of a muscle.
  • That muscles come in antagonistic pairs, like biceps and triceps, or quadriceps and hamstrings: when one contracts, the other relaxes.
  • That muscles are attached to bones by tendons.
  • That there are three muscle types: skeletal, cardiac, and smooth. You should understand which of these is voluntary and where each can be found.

Learning Activity

Picture
Next: Anatomy of the Musculoskeletal System

Contributors: Megha Kori, Emma Moulton
​Some images made using biorender.com


© COPYRIGHT 2020. ALL RIGHTS RESERVED.