EONS LEARNING

  • Home
  • About Us
  • Classroom
    • Resources >
      • Study Skills
      • Periodic Table
      • Common Ion Sheet
      • The Scientific Method
      • Doing Background Research
    • Introduction and Course Philosophy
    • Unit 1: Beginning Chemistry >
      • Lesson 1: The Atom >
        • What is an Atom?
        • The Structure of Atoms
        • The Periodic Table
        • Modeling Atoms
      • Lesson 2: Chemical Bonding >
        • Why Do Atoms Form Bonds?
        • Ionic Bonding
        • Covalent Bonding
        • Intermolecular Attraction
      • Lesson 3: Chemical Nomenclature >
        • Octet Rule
        • Ionic Compounds
        • Covalent Molecules
      • Lesson 4: Molecular Molecules >
        • Modeling Ionic Compounds
        • Modeling Covalent Molecules
      • Lesson 5: States of Matter >
        • States of Matter
        • Phase Changes
      • Lesson 6: Density >
        • What is Density?
        • Calculating Density
      • Lesson 7: Thermodynamics >
        • Temperature
        • Heat
        • Gas Laws
      • Lesson 8: Solution Chemistry >
        • Diffusion
        • Solutions and Molarity
        • Semi-Permeable Membranes
      • Lesson 9: Thermal Expansion >
        • Thermal Expansion
    • Unit 2: Earth Science >
      • Lesson 10: Earth at a Glance >
        • Perspective
        • Maps
      • Lesson 11: Layers of the Earth >
        • Layers of the Earth
      • Lesson 12: Plate Tectonics >
        • Plate Tectonics
      • Lesson 13: Rocks and Minerals >
        • Rocks and Minerals
      • Lesson 14: Particle Sorting >
        • Differentiation
        • Deposition of Sediment
      • Lesson 15: The Atmosphere >
        • Composition of the Atmosphere
        • Layers of the Atmosphere
        • Change Over Time
        • Atmospheric Disruption
    • Unit 3: The Cell >
      • Lesson 16: Life >
        • What is Life?
        • Structural Hierarchy of Living Things
      • Lesson 17: Biochemistry >
        • Intro to Biochemistry
        • Water
        • Micromolecules
        • Energy, Carbohydrates, Lipids
        • Protein and Nucleic Acid
      • Lesson 18: Cells >
        • What are Cells?
        • Microscopy
        • Plant and Animal Cells
      • Lesson 19: Membrane Transport >
        • A Special Environment
        • The Structure of Membranes
        • Membrane Transport
      • Lesson 20: Energy and Cell Respiration >
        • Energy in Biology
        • Energy Diagrams
        • Glycolysis and Anaerobic Respiration
        • Aerobic Cellular Respiration
      • Lesson 21: Photosynthesis >
        • Plants Get Energy From The Sun
        • Photosynthesis Process
        • Energy, Ecosystems, and the Environment
    • Unit 4: Anatomy and Physiology >
      • Lesson 22: The Human Body >
        • What Are Bodies Made Of?
        • What Do Bodies Do?
      • Lesson 23: The Nervous System >
        • The Nervous System
        • Neuronal Communication
        • The Central Nervous System
      • Lesson 24: The Endocrine System >
        • The Endocrine System
        • Hormones
        • Hormones, Puberty, and Reproduction
      • Lesson 25: The Integumentary System >
        • The Integumentary System
      • Lesson 26: The Musculoskeletal System >
        • The Skeletal System
        • The Muscular System
        • Anatomy Of The Musculoskeletal System
      • Lesson 27: The Cardiovascular System >
        • Blood and Blood Vessels
        • The Heart
      • Lesson 28: The Respiratory System >
        • The Respiratory System
      • Lesson 29: The Digestive System >
        • The Digestive System
        • Nutrition
      • Lesson 30: The Excretory System >
        • The Excretory System
      • Lesson 31: The Immune System >
        • Disease and Infection
        • Immunity
    • Units 5-6 Coming Soon
  • Workbench
    • Unit 1 >
      • EIS >
        • Lesson 1: Atoms
        • Lesson 2: Chemical Bonding
        • Lesson 3: Chemical Nomenclature
        • Lesson 4: Molecular Models
        • Lesson 5: States of Matter
        • Lesson 6: Density
        • Lesson 7: Thermodynamics
        • Lesson 8: Solution Chemistry
        • Lesson 9: Thermal Expansion
      • Unit 1: Project
      • Unit 1: Exam Review
      • Unit 1: Exam
    • Unit 2 >
      • EIS >
        • Lesson 10: Earth at a Glance
        • Lesson 11: Layers of the Earth
        • Lesson 12: Plate Tectonics
        • Lesson 13: Rocks and Minerals
        • Lesson 14: Particle Sorting
        • Lesson 15: The Atmosphere
      • Unit 2: Project
      • Unit 2: Exam Review
      • Unit 2: Exam
    • Unit 3 >
      • EIS >
        • Lesson 16: Life
        • Lesson 17: Biochemsitry
        • Lesson 18: Cells
        • Lesson 19: Membrane Transport
        • Lesson 20: Energy and Cell Respiration
        • Lesson 21: Photosynthesis
      • Unit 3: Project
      • Unit 3: Exam Review
      • Unit 3: Exam
    • Unit 4 >
      • EIS >
        • 22: The Human Body
        • 23: The Nervous System
        • 24: The Endocrine System
        • 25: The Integumentary System
        • 26: The Musculoskeletal System
        • 27: The Cardiovascular System
        • 28: The Respiratory System
        • 29: The Digestive System
        • 30: The Excretory System
        • 31: The Immune System
      • Unit 4 Project
      • Unit 4 Exam Review
      • Unit 4 Exam
    • Units 5-6 Coming Soon
  • Donate
  • Home
  • About Us
  • Classroom
    • Resources >
      • Study Skills
      • Periodic Table
      • Common Ion Sheet
      • The Scientific Method
      • Doing Background Research
    • Introduction and Course Philosophy
    • Unit 1: Beginning Chemistry >
      • Lesson 1: The Atom >
        • What is an Atom?
        • The Structure of Atoms
        • The Periodic Table
        • Modeling Atoms
      • Lesson 2: Chemical Bonding >
        • Why Do Atoms Form Bonds?
        • Ionic Bonding
        • Covalent Bonding
        • Intermolecular Attraction
      • Lesson 3: Chemical Nomenclature >
        • Octet Rule
        • Ionic Compounds
        • Covalent Molecules
      • Lesson 4: Molecular Molecules >
        • Modeling Ionic Compounds
        • Modeling Covalent Molecules
      • Lesson 5: States of Matter >
        • States of Matter
        • Phase Changes
      • Lesson 6: Density >
        • What is Density?
        • Calculating Density
      • Lesson 7: Thermodynamics >
        • Temperature
        • Heat
        • Gas Laws
      • Lesson 8: Solution Chemistry >
        • Diffusion
        • Solutions and Molarity
        • Semi-Permeable Membranes
      • Lesson 9: Thermal Expansion >
        • Thermal Expansion
    • Unit 2: Earth Science >
      • Lesson 10: Earth at a Glance >
        • Perspective
        • Maps
      • Lesson 11: Layers of the Earth >
        • Layers of the Earth
      • Lesson 12: Plate Tectonics >
        • Plate Tectonics
      • Lesson 13: Rocks and Minerals >
        • Rocks and Minerals
      • Lesson 14: Particle Sorting >
        • Differentiation
        • Deposition of Sediment
      • Lesson 15: The Atmosphere >
        • Composition of the Atmosphere
        • Layers of the Atmosphere
        • Change Over Time
        • Atmospheric Disruption
    • Unit 3: The Cell >
      • Lesson 16: Life >
        • What is Life?
        • Structural Hierarchy of Living Things
      • Lesson 17: Biochemistry >
        • Intro to Biochemistry
        • Water
        • Micromolecules
        • Energy, Carbohydrates, Lipids
        • Protein and Nucleic Acid
      • Lesson 18: Cells >
        • What are Cells?
        • Microscopy
        • Plant and Animal Cells
      • Lesson 19: Membrane Transport >
        • A Special Environment
        • The Structure of Membranes
        • Membrane Transport
      • Lesson 20: Energy and Cell Respiration >
        • Energy in Biology
        • Energy Diagrams
        • Glycolysis and Anaerobic Respiration
        • Aerobic Cellular Respiration
      • Lesson 21: Photosynthesis >
        • Plants Get Energy From The Sun
        • Photosynthesis Process
        • Energy, Ecosystems, and the Environment
    • Unit 4: Anatomy and Physiology >
      • Lesson 22: The Human Body >
        • What Are Bodies Made Of?
        • What Do Bodies Do?
      • Lesson 23: The Nervous System >
        • The Nervous System
        • Neuronal Communication
        • The Central Nervous System
      • Lesson 24: The Endocrine System >
        • The Endocrine System
        • Hormones
        • Hormones, Puberty, and Reproduction
      • Lesson 25: The Integumentary System >
        • The Integumentary System
      • Lesson 26: The Musculoskeletal System >
        • The Skeletal System
        • The Muscular System
        • Anatomy Of The Musculoskeletal System
      • Lesson 27: The Cardiovascular System >
        • Blood and Blood Vessels
        • The Heart
      • Lesson 28: The Respiratory System >
        • The Respiratory System
      • Lesson 29: The Digestive System >
        • The Digestive System
        • Nutrition
      • Lesson 30: The Excretory System >
        • The Excretory System
      • Lesson 31: The Immune System >
        • Disease and Infection
        • Immunity
    • Units 5-6 Coming Soon
  • Workbench
    • Unit 1 >
      • EIS >
        • Lesson 1: Atoms
        • Lesson 2: Chemical Bonding
        • Lesson 3: Chemical Nomenclature
        • Lesson 4: Molecular Models
        • Lesson 5: States of Matter
        • Lesson 6: Density
        • Lesson 7: Thermodynamics
        • Lesson 8: Solution Chemistry
        • Lesson 9: Thermal Expansion
      • Unit 1: Project
      • Unit 1: Exam Review
      • Unit 1: Exam
    • Unit 2 >
      • EIS >
        • Lesson 10: Earth at a Glance
        • Lesson 11: Layers of the Earth
        • Lesson 12: Plate Tectonics
        • Lesson 13: Rocks and Minerals
        • Lesson 14: Particle Sorting
        • Lesson 15: The Atmosphere
      • Unit 2: Project
      • Unit 2: Exam Review
      • Unit 2: Exam
    • Unit 3 >
      • EIS >
        • Lesson 16: Life
        • Lesson 17: Biochemsitry
        • Lesson 18: Cells
        • Lesson 19: Membrane Transport
        • Lesson 20: Energy and Cell Respiration
        • Lesson 21: Photosynthesis
      • Unit 3: Project
      • Unit 3: Exam Review
      • Unit 3: Exam
    • Unit 4 >
      • EIS >
        • 22: The Human Body
        • 23: The Nervous System
        • 24: The Endocrine System
        • 25: The Integumentary System
        • 26: The Musculoskeletal System
        • 27: The Cardiovascular System
        • 28: The Respiratory System
        • 29: The Digestive System
        • 30: The Excretory System
        • 31: The Immune System
      • Unit 4 Project
      • Unit 4 Exam Review
      • Unit 4 Exam
    • Units 5-6 Coming Soon
  • Donate

Thermal Expansion

What is Thermal Expansion?

Thermal expansion. You would probably not be the only person in the world to say that those two words might not sound that interesting or important. But, it’s actually really important in structural engineering. For example, problems with thermal expansion were involved in a major airport terminal collapse, killing 4 and injuring 3 others, as described in this video:

​So, basically, thermal expansion is really important. And, based on what you’ve already learned, the concept really isn’t that complicated.

You’ve learned already that gases and liquids (with the exception of liquid water) both expand when they are heated. To recap, this is because temperature is kinetic energy: an increase in temperature (like on a hot day, or when you turn on the stove) is an increase in kinetic energy of the molecules. So, when heated, molecules start bouncing around more, end up pushing out on their container more, and end up taking up more space. This is demonstrated nicely in this video:


Solids do the exact same thing. The molecules are a lot closer together than they are in a liquid or gas, which is what makes it a solid, but they will still move faster and expand with an increase in temperature. Likewise, they will contract, or come closer together, with a decrease in temperature. This simple demonstration shows the expansion of solids at work.
​

Calculating Thermal Expansion

There is also an equation that lets you calculate just how much a solid will expand with a given increase in temperature, shown below.
Picture

​This says that the change in length is equal to a coefficient of expansion (α), which is basically just a fancy way of saying that the amount of expansion depends on the type of solid (aluminum versus glass versus concrete, etc.), times the original length of the metal times the change in temperature. These should all seem like fairly intuitive relationships: different solids behave differently, more metal to begin with means more expansion, and a bigger temperature change means more expansion.

It’s important to note that the relationship between temperature change and expansion is linear, which means that the same change in temperature will always cause the same change in length, no matter what that temperature is. So, if you go from 1000 ºC to 1001 ºC, the change will be just as much as if you had gone from -20 ºC to -19 ºC. It also means that the contraction from 20 ºC to 19 ºC will be the same amount as the expansion from 20 ºC to 21 ºC. Don’t worry about calculating anything with this equation, but the relationships are important to keep in mind. 

How Do We Engineer Around Thermal Expansion?

Understanding thermal expansion is useful for more than just nerdy lab demonstrations. For example, you could also take advantage of the expansion of solids to loosen a tight lid on a jar by running it under hot water. It is also very important in real life: remember that terminal collapse at the airport? That was partly because the metal in the structure kept expanding and contracting with changes in temperature, which stressed the system. It’s also important to keep thermal expansion in mind for things like building bridges, especially when they’re made out of metal (concrete will also expand, but not as much). Here is a video of a bridge collapsing for entertainment purposes. What happens? It gets super hot, the metal expands, and everything collapses. I haven’t seen the movie, but I assume it involves aliens.

​Think about it: when you build a bridge, you want it to be a very particular length. If it contracts too much, the pieces that go into the bridge will pull apart, and it will collapse. If it expands too much, the pieces will push into each other, making cracks, and the bridge will collapse. Basically, a lot of potential death. The solution? Engineers came up with these things called expansion gaps and expansion joints.

Expansion gaps are basically just little spaces we leave when laying down blocks of metal (or concrete, or hardwood floor) to give them space to expand under natural conditions and prevent cracking. Expansion joints are similar, but also connect the two things when they pull apart so you don’t get too big of a gap (when you’re building a bridge, you don’t want huge gaps in it). The video below shows an expansion joint at work.
​

​Fascinating, right? Well, admittedly, this bridge moving ever so slightly back and forth to some catchy royalty-free music does not have the same entertainment value as an alien heat wave taking down the Golden Gate. But, that’s exactly the point. The goal of construction isn’t to cause a bridge to collapse with all the fiery entertainment of a blockbuster movie, it’s to keep things boring, functional, and reliable. Thanks, boring joint!

Summary

You should understand:
  • That solids, like liquids and gases, expand when they are heated and contract when they are cooled.
  • That the thermal expansion of solids can be calculated and depends on the type of solid we’re talking about, the initial length of that solid, and the change in temperature.
The purpose of expansion gaps and expansion joints in engineering.

Learning Activity

Picture
Unit 2: Earth Science
Lesson 9: Thermal expansion eis

Content contributors: Emma Moulton and Emily Zhang
© COPYRIGHT 2020. ALL RIGHTS RESERVED.